

Edição 2020

Categoria: Castores (3° e 4° ano de escolaridade)

Tempo: 45 minutos

RESOLVE TANTOS PROBLEMAS QUANTO POSSÍVEL EM 45 MINUTOS.

Não é esperado que consigas resolver todos!

RESPONDE APENAS NA FOLHA DE RESPOSTAS. É UMA FOLHA ÚNICA, À PARTE, QUE DEVERÁS IDENTIFICAR COM O TEU NOME.

OS ENUNCIADOS E FOLHAS DE RASCUNHO
DEVEM SER OBRIGATORIAMENTE RECOLHIDOS NO FINAL DA PROVA.

Conteúdo

	Página
Preâmbulo	2
Organização	2
Estrutura da Prova	3
Sobre os Problemas	3
1 — Linhas de Comboio	4
2 — A Cauda do Castor	5
3 – Pegadas	6
4 — Blocos com Pintas	7
5 — Desenhar um Robô	8
6 - Tigelas	9
7 — Os Animais dos Castores	10
8 – Vistas	11
9 - Torres de Blocos	12
10 – Visualização de Dados	13
11 — Classificador de Objetos	14
12 - Estrelas e Luas	1.5

Preâmbulo

O *Bebras - Castor Informático* é uma iniciativa internacional destinada a promover o pensamento computacional e a Informática (Ciência de Computadores). Foi desenhado para motivar alunos de todo o mundo e de todas as idades mesmo que não tenham experiência prévia.

Tem já uma longa história e foi iniciado em 2004 pela Prof. Valentina Dagienė, da Universidade de Vilnius, na Lituânia. O seu nome original vem dessa origem - 'bebras' significa 'castor' em lituano. A comunidade internacional adotou esse nome, porque os castores buscam a perfeição no seu dia-a-dia e são conhecidos por serem muito trabalhadores e inteligentes.

O que é o Pensamento Computacional?

O pensamento computacional é um conjunto de técnicas de resolução de problemas que envolve a maneira de expressar um problema e a sua solução de maneira a que um computador (seja um humano ou máquina) a possa executar. É muito mais do que simplesmente saber programar e envolve vários níveis de abstração e as capacidades mentais que são necessárias para não só desenhar programas e aplicações, mas também saber explicar e interpretar um mundo como um sistema complexo de processos de informação.

A expressão 'pensamento computacional' tornou-se conhecida em 2006 e pode ser vista como a nova literacia do século XXI. O desafio do Bebras promove precisamente este tipo de habilidades e conceitos informáticos como a capacidade de partir um problema complexo em problemas mais simples, o desenho de algoritmos, o reconhecimento de padrões ou a capacidade de generalizar e abstrair.

Organização

O *Bebras - Castor Informático* é organizado pelo Departamento de Ciência de Computadores (DCC/FCUP) da Faculdade de Ciências da Universidade do Porto (FCUP), juntamente com o TreeTree2.

TREETREE2

O Departamento de Ciência de Computadores da Faculdade de Ciências da Universidade do Porto é o ponto de contacto português junto da organização internacional. Para além de ser uma instituição de referência no ensino e na investigação, o DCC/FCUP apoia este tipo de iniciativas desde há muitos anos, sendo também um dos principais organizadores das Olimpíadas Nacionais de Informática.

O TreeTree2 é uma organização sem fins lucrativos que pretende cumprir o potencial criativo e intelectual dos jovens. Desenvolve vários programas de divulgação e ensino da ciência e engenharia. Noutras iniciativas, e na promoção e desenvolvimento do pensamento computacional em particular, conta com o apoio do Instituto Superior Técnico e financiamento da Fundação Calouste Gulbenkian.

Estrutura da Prova

• Existe apenas uma fase, a qual é constituída por uma prova escrita com questões de escolha múltipla ou de resposta aberta. Existem perguntas de três níveis de dificuldade diferentes, cuja pontuação é da seguinte forma:

Dificuldade	Correto	Incorreto	Não respondido
A - fácil	+6 pontos	-2 pontos	0 pontos
B - média	+9 pontos	-3 pontos	0 pontos
C - difícil	+12 pontos	-4 pontos	0 pontos

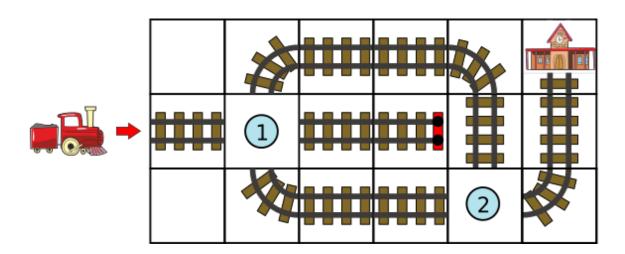
- A prova é individual e tem a duração de 45 minutos.
- Os alunos respondem unicamente na folha de respostas, independente do enunciado da prova, a qual será fornecida conjuntamente com a prova. As respostas deverão ser depois preenchidas numa folha de cálculo que será fornecida ao professor responsável, que a deverá posteriormente enviar para a organização.
- Os enunciados da prova devem ser recolhidos no final do concurso. Os alunos poderão consultar mais tarde novamente os enunciados quando estes foram divulgados publicamente.
- As possíveis folhas de rascunho entregues aos alunos também devem ser recolhidas no final do concurso.
- A gestão de situações de fraude ou de comportamento impróprio durante a realização do concurso ficará a cargo da Escola que deverá gerir a situação de acordo com as suas regras internas.

Sobre os Problemas

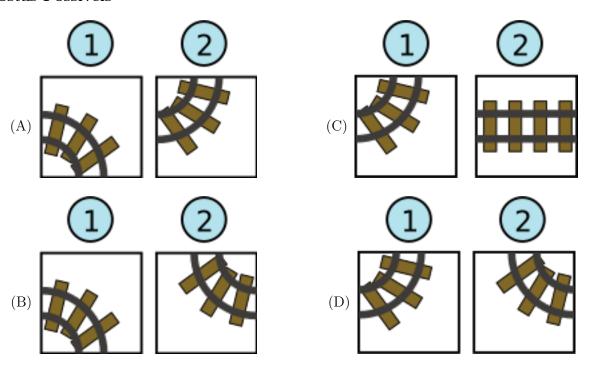
Os problemas aqui colocados foram criados pela comunidade internacional da iniciativa Bebras e estão protegidos por uma licença da Creative Commons Atribuição-NãoComercial-CompartilhaIgual 4.0 Internacional.

Os nomes dos autores dos problemas serão discriminados na versão final a divulgar no sítio oficial do Bebras - Castor Informático. Os problemas foram escolhidos, traduzidos e adaptados pela organização portuguesa. Para a edição portuguesa deste ano foram usados problemas com autores originários dos seguintes países:

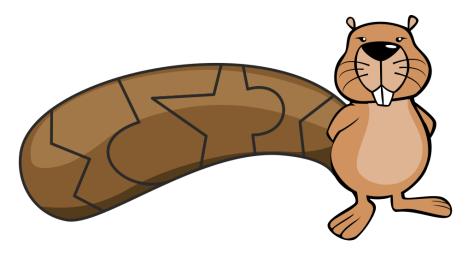
Dificuldade: **fácil** | Origem:

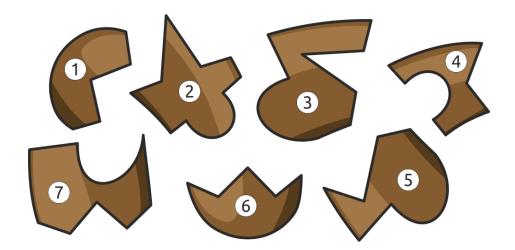

Linhas de Comboio

Consegues ajudar o comboio


a chegar à estação

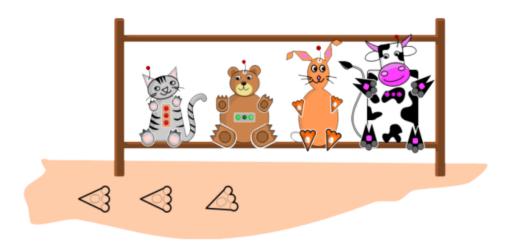
Pergunta

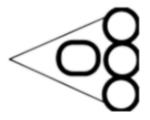

Qual das seguintes opções permite completar a linha de forma a que o comboio chegue à estação?


2 – A Cauda do Castor

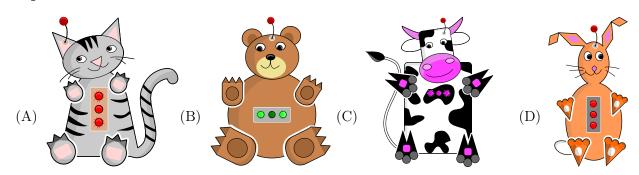
A cauda deste castor é feita de vários pedaços.

Pergunta


Escreve os números que respondem à pergunta: quais das seguintes formas $n\tilde{a}o$ fazem parte da cauda do castor?


3 – Pegadas

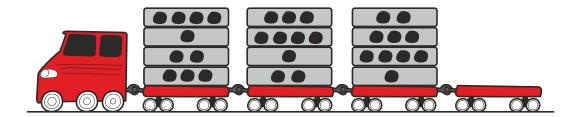
Há quatro animais robôs numa loja:



Um animal robô andou secretamente pela loja durante a noite. Havia um trilho de pegadas no chão.

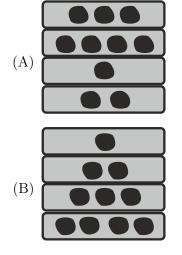
Pergunta

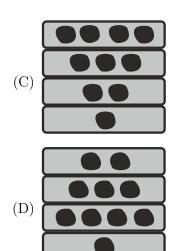
De quem é esta pegada?



Dificuldade: **fácil** | Origem:

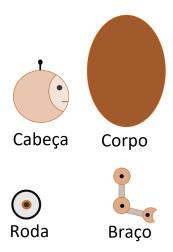
4 – Blocos com Pintas


Um comboio que tem 4 carruagens carrega blocos que estão identificados com pontos.


A primeira, segunda, e terceira carruagens já estão carregadas com blocos. Os blocos estão dispostos de acordo com uma certa regra.

Pergunta

Qual é a disposição de blocos na última carruagem, de forma a respeitar a regra usada nas restantes?

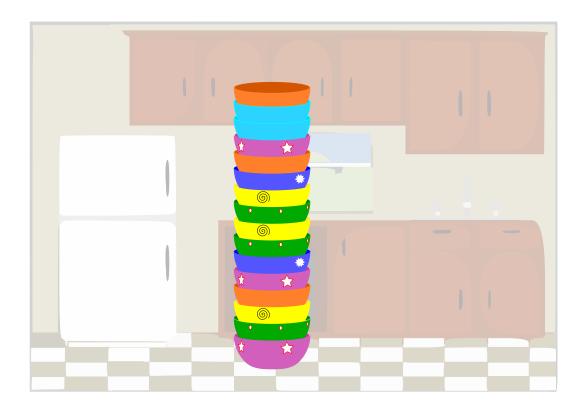




Desenhar um Robô

A Jelena adora desenhar no computador. Hoje está a desenhar um robô. Primeiro, desenhou as seguintes partes do robô:

Depois disso, juntou-as numa só imagem, como se pode ver abaixo:


Pergunta

Se cada nova parte do robô é colocada por cima das anteriores, por qual ordem foram colocadas as peças?

- (A) Cabeça, roda, corpo, braço.
- (B) Roda, corpo, cabeça, braço.
- (C) Corpo, roda, braço, cabeça.
- (D) Roda, cabeça, braço, corpo.

Tigelas

Três irmãos querem comer o pequeno-almoço em três tigelas do mesmo tipo. Têm uma pilha de tigelas de muitos tipos diferentes e as tigelas só podem ser retiradas do topo da pilha.

Pergunta

Qual é o menor número de tigelas que têm que ser retiradas para se obterem três tigelas do mesmo tipo?

- (A) 13
- (B) 14
- (C) 15
- (D) 16

Dificuldade: **média** | Origem: |---

7 – Os Animais dos Castores

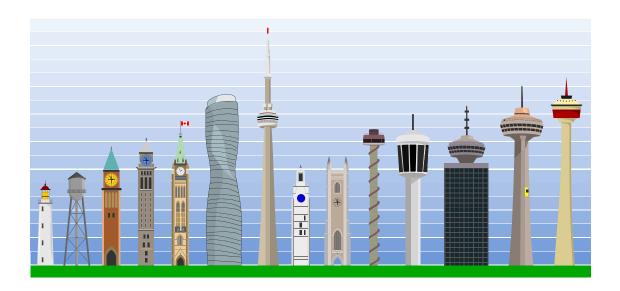
A Anna, o Ben, e a Lisa vivem na Aldeia dos Castores. Cada um vive numa casa de cor diferente e cada um deles tem um animal de estimação diferente. Sabe-se que:

- uma das casas é azul;
- a Anna vive na casa amarela;
- o Ben vive na casa ao lado da Lisa;
- o gato vive na casa vermelha;
- a Lisa tem um papagaio.

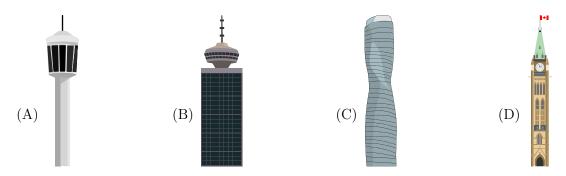
Pergunta

Quem tem um cão? A seguinte tabela pode ajudar-te a chegar à solução:

Casa	1	2	3
Cor			
Nome			
Animal			


Amarelo	Vermelho	Azul
Anna	Ben	Lisa
Gato	Cão	Papagaio

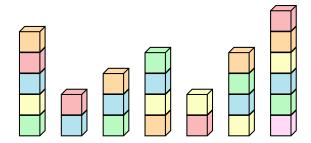
- (A) Anna
- (B) Ben
- (C) Lisa


Vistas

Uma cidade tem 14 torres como se mostra abaixo:

Pergunta

Se as torres fossem ordenadas da mais baixa para a mais alta, qual das torres apareceria em 10^{0} lugar na lista?



Dificuldade: **difícil** | Origem: 🏮

9 – Torres de Blocos

Sam, o pequeno castor, está a brincar com os seus blocos. Construiu sete bonitas torres, cada uma feita com blocos do mesmo tamanho:

Sam tem disponíveis mais blocos além dos colocados nas torres e tem duas maneiras de mudar a altura de uma torre: adicionar blocos novos ao topo ou remover blocos existentes do topo. Cada adição ou remoção de blocos conta como uma operação.

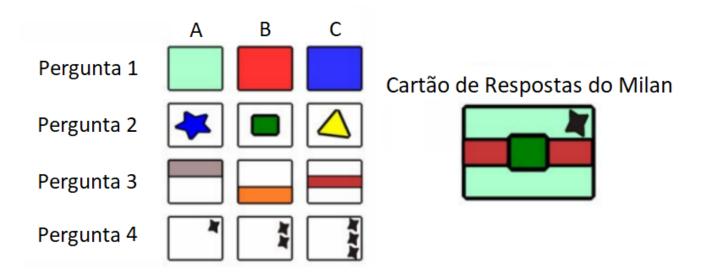
Por exemplo: para ele mudar a altura da torre da esquerda para 2, precisa de 3 operações (remover 3 blocos), e para a mudar para 7, precisa de 2 operações (adicionar 2 blocos).

O Sam quer que todas as torres sejam da mesma altura, e quer fazer o menor número de operações possível.

Pergunta

No total, qual é o menor número de operações que o Sam precisa de fazer para tornar todas as torres da mesma altura?

- (A) 6
- (B) 7
- (C) 8
- (D) 9
- (E) 10
- (F) 11

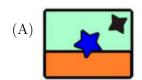


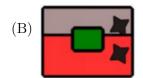
Visualização de Dados

O Milan e a Maya responderam a um questionário com 4 perguntas. As respostas do Milan foram:

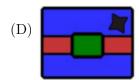
- Pergunta 1: Resposta A
- Pergunta 2: Resposta B
- Pergunta 3: Resposta C
- Pergunta 4: Resposta A

De acordo com as regras apresentadas abaixo, o Milan recebeu um cartão com as suas respostas:




Pergunta

As respostas da Maya foram:


- Pergunta 1: Resposta B
- Pergunta 2: Resposta B
- Pergunta 3: Resposta A
- Pergunta 4: Resposta B

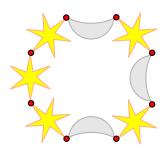
Que cartão representa as respostas da Maya?

Dificuldade: **difícil** | Origem:

11 – Classificador de Objetos

A Bora usou um esquema para organizar as suas roupas em três gavetas diferentes. Começou no topo do esquema, escolhendo um objeto. Depois, seguiu a seta até chegar a uma pergunta, decidiu se a resposta era "sim"ou "não", e seguiu a seta que correspondia à resposta.

A Bora continuou a responder às perguntas até chegar a uma gaveta. Ela colocou o objeto dentro dessa gaveta e começou outra vez do início, do topo do esquema, com um novo objeto, até todas as suas roupas estarem organizadas.


Pergunta

Se as roupas da Bora estão organizadas nas gavetas como mostra a figura, que pergunta <? \(\) \(\) \(\) \(\) \(\) \(\) compatível com o resultado?

- (A) Tem mangas compridas?
- (B) Tem botões?
- (C) Tem um fecho de correr?
- (D) Tem um bolso?

12 – Estrelas e Luas

A Mary quer uma pulseira como a da imagem abaixo.

Então, ela dá ao John as seguintes instruções:

- Pega numa estrela 🗡 e numa lua e liga-as uma à outra.
- Repete o passo anterior mais duas vezes.
- Pega nas três partes já feitas e liga-as numa corrente única.
- Junta duas estrelas a uma das pontas da corrente e liga as duas pontas da corrente para fazer uma pulseira.

Infelizmente, se o John não tiver uma fotografia da pulseira que a Mary quer, pode acabar por fazer uma pulseira muito diferente, mesmo que siga as instruções todas corretamente.

Pergunta

Três das quatro pulseiras mostradas abaixo poderiam ter sido feitas pelo John. Qual das pulseiras **não** pode ser construída seguindo as regras da Mary?

